Cong et al. proposed a scalable zkSNARK framework for matrix computations, achieving linear proving time, logarithmic proof size, and verification time, while preserving architecture privacy. Cong等人在论文中提出了一种可扩展的zkSNARK框架,用于矩阵计算,实现线性证明时间、对数级证明大小和验证时间,同时保护架构隐私。
Notes
Proposes a generic zkSNARK framework modeling neural networks as matrix-computation DAGs.
Introduces a dual-layer design: LiteBullet ensures linear proving, PoP compresses proofs and hides structure.